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The approximate SCC-DFTB method (Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.;
Frauenheim, Th.; Suhai, S.; Seifert, G.Phys. ReV. B 1998, 58, 7260) is derived from DFT by a second-order
expansion of the total energy expression. In this article, basic approximations and assumptions underlying
the DFTB method are discussed in detail, and further extensions to include third-order terms are proposed.
Further, the SCC-DFTB and semiempirical NDDO formalisms are compared to elucidate similarities and
differences.

Introduction

The non-self-consistent DFTB method, as introduced in refs
1 and 2, is an approximation to density functional theory (DFT)
in a LCAO formulation.

G. Seifert3 (this volume) reviews the underlying assumptions
and approximations of the DFTB method in great detail;
therefore, the following is only a brief introduction, necessary
to understand the concepts behind the self-consistent charge
(SCC) extension.

Consider a case where the ground-state densityF0 is known
already to sufficient accuracy. In this case,5 the self-consistent
solution of the Kohn-Sham (KS) equations can be omitted.
The KS orbitals are calculated by solving

with the effective KS potential

Introduction of a LCAO basis set

and the Hamiltonian

leads to the generalized eigenvalue problem

which is usually solved using matrix diagonalization methods.
Note that the DFTB method makes use of the overlap matrix

which is calculated from the atomic orbitals. Nonorthogonal
methods (i.e., those including the overlap matrix) are thought
to be more robust and transferable compared to orthogonal
methods, where the atomic orbitals are assumed to be orthogo-
nal.

The DFTB Hamilton matrix elements calculated for the
minimal LCAO basis setην

are subject to several approximations, in particular a two-
center approximation is applied, as discussed in the article of
G. Seifert (in this volume).3 Hµν

0 (the index 0 indicates the
reference densityF0) andSµν are calculated once using an atomic
DFT program and are tabulated. Therefore, that main compu-
tational cost of DFTB is the solution of the generalized
eigenvalue problem, that is, the diagonalization of the Hamilton
matrix.

The sum of the Kohn-Sham eigenvalues

is only one part of the DFTB total energy; the second part
represents the DFT double-counting contributions and core-
core repulsion terms. These contributions are approximated as
repulsive and pairwise potentials (between atomsR andâ)

The total energy therefore reads

This scheme is computationally very efficient, about 3 orders
of magnitude faster than DFT calculations with medium-sized
basis sets. Its accuracy is satisfactory for many applications;† Part of the “DFTB Special Section”.
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especially molecular geometries are comparable to those of DFT,
but vibrational properties being slightly worse. Of course, the
accuracy depends critically on the quality of the Hamilton matrix
elements. Here, we focus on a different point, the limitations
due to the non-self-consistent treatment of the KS equations.
This approximation is expected to work satisfactorily when the
ground-state density is close to the reference densityF0, a point
discussed in detail by Foulkes and Haydock.6 In DFTB, we
chooseF0 as a superposition of the atomic densities of the neutral
atoms in the system. Combination of atoms into a molecule
leads primarily to a charge equilibration, that is, a charge flow
between the atoms due to the different atomic electronegativities.
This charge flow will stop when the electronegativities are
equilibrated.4 A second effect is that the atomic-like densities
will change their shape. This is taken into account by the
solution of the KS equations, that is, the diagonalization of the
Hamilton matrix leads to a charge density in the non-self-
consistent formalism, which represents the molecular charge
density and is no more a superposition of spherical atomic
charge densities.

Therefore, we expect the method to work when the system
contains atoms with comparable electronegativities; typical
examples are hydrocarbons.1 Many other homo- and hetero-
nuclear molecular systems have been approached successfully
with DFTB, containing, for example, silicon, nitrogen, and other
elements. Dramatic failures have been found when oxygen is
present.8 However, there is no clear limit for the use of the non-
self-consistent method. Large electronegativity differences
between the atoms of the system are an indicator, but the method
does not necessarily fail here. Ionic systems like NaCl with large
charge transfer between the atoms have been treated successfully
with non-self-consistent methods (e.g., ref 7). Systems with
intermediate charge transfer, where the electronegativity dif-
ference favors a significant charge transfer but the equilibration
of electronegativities leads to a partial back-transfer, seem to
be most problematic. This is often the case for biological and
organic systems containing oxygen; therefore, a self-consistent
scheme is usually required.

The effective Kohn-Sham potentials in the non-self-
consistent case contain only the neutral reference densityF0,
which does not account for charge transfer between atoms. To
account for that, a simple (functional) expansion of the potential
with the ground-state densityF around the reference densityF0

leads to

The advantage of this perturbative approach is that it corrects
the zero-order Hamilton matrix elementsHµν[F0], which depend
on the reference density as above, by terms depending on the
charge density fluctuation with respect to the reference density.
Therefore, a self-consistent procedure based on such an expan-
sion can use the formalism of the non-self-consistent method
and has to take corrections into account only for the case of
nonnegligible charge flow between the atoms.

Self-Consistent Charge (SCC) Extension of DFTB

Instead of expanding the potentials in the KS equations, it is
more convenient to start from the DFT total energy by a second-
order expansion8 with respect to the charge density fluctuations
δF around a given reference densityF0

After introducing the LCAO basisΨi ) ∑ cµ
i ηµ, the first term

becomes

and can be evaluated as discussed above. The last four terms
depend only on the reference densityF0 and represent (together
with the core-core repulsion) the repulsive energy contribution
Erep, as discussed in the contribution of G. Seifert.3

The second-order term in the charge density fluctuations∆F
(the second term in eq 10) is approximated by writing∆F as a
superposition of atomic contributions

To further simplifyE2nd, we apply a monopole approximation

F00
R denotes the normalized radial dependence of the density

fluctuation on atomR, which is constrained (approximated) to
be spherical (Y00), that is, the angular deformation of the charge
density change in second order is neglected. Therefore, we only
treat the charge-transfer effects but neglect the change in the
shape of the charge density (with respect to the reference
density) in the second-order expression. Note that this is partly
taken care of in the first-order terms (see Introduction). The
diagonalization of the Hamilton matrix describes this density
shape change of the neutral atomic input densities, however,
only in a non-self-consistent way. The second-order part
becomes

This formula looks complicated but has a quite simple curve
shape. For large distances,RRâ ) |rb - rb′| f ∞, the XC terms
vanish (in DFT-GGA), and the integral describes the coulomb
interaction of two spherical normalized charge densities, which
reduces basically to 1/RRâ, that is, we get

For a vanishing interatomic distance,RRâ ) |rb - rb′| f 0, the
integral describes the e-e interaction on atomR. We can
approximate the integral as

UR is known as the Hubbard parameter or the chemical hardness.
It describes, how much the energy of a system changes upon
the addition or removal of electrons. For SCC-DFTB, it is
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calculated using Janak’s theorem by taking the first derivative
of the energy of the highest occupied molecular orbital with
respect to occupation number.

The intermediate region of chemical bonding (1-3 Å),
however, is not covered in these limits. It is therefore crucial
to find a good way to interpolate between the limits since an
explicit calculation of the integrals would be too costly. A very
similar situation appears in semiempirical quantum chemical
methods like MNDO, AM1, or PM3, where the interpolating
function γRâ has a simple form, as given, for example, by the
Klopman-Ohno approximation

In a first version, this form was implemented into DFTB;
however, the Ewald sum using this form exhibited convergence
problems. Therefore, an analytic expression has been derived
by approximating the charge density fluctuations with spherical
charge densities.8 Slater-like distributions

located atRR allow for an analytical evaluation of the Hartree
contribution of two spherical charge distributions. This leads
to a function ofγRâ, which depends on the parametersτR and
τâ, determining the extension of the charge densities of the atoms
R and â. This function has a 1/RRâ dependence for largeRRâ
and approaches a finite value forRRâ f 0. For R ) â, one
finds that8

Equation 15 implies that the extension of the charge distribution
is inversely proportional to the chemical hardness of the
respective atom, that is, the size of an atom is inversely related
to its chemical hardness. By neglecting the effect of the chemical
environment on atomR, the diagonal part ofγ can be
approximated by the chemical hardnessη of the atom

Using the interpolation formulaγRâ, E2nd becomes a simple two-
body expression, depending on atomic-like charges (from a
Mulliken population analysis)

With these definitions and approximations, the SCC-DFTB
energy finally reads

The variational principle leads to a generalized eigenvalue
problem like that in eq 5, which has to be solved iteratively for
the wave function expansion coefficientscµ

i since the Hamilton

matrix elements depend on thecµ
i due to the Mulliken charges

(µεR, νεâ)

The two-body contributionsU[RRâ] are determined by com-
parison of the energy according to eq 18 with that from full
DFT calculations with respect to the interatomic distanceRRâ
of the atomsR andâ (see refs 3 and 9). The resulting energy
curve U[RRâ] is then analytically represented by splines. The
determination of repulsive potentials for organic molecules has
been reviewed briefly recently.9

Let’s recall the basic assumptions in the SCC approximations.
(1) The starting (input) density is generated from a superposition
of spherical atomic densities (neutral atoms). The density change
from this reference density is described by the first-order terms,
by diagonalization ofHµν

0Râ in a non-self-consistent way. At the
second order, due to the monopole approximation, only the net
charge flow between the atoms is treated self-consistently.
Higher multipole terms in the interaction of the difference
density∆F are neglected at second order but included in first
order partially by∑iµν cµ

i cν
i Hµν

0 .
(2) The monopole interaction in second order is approximated

by the interaction of point charges, where the effects of charge
overlap, exchange, and correlation are taken into account
effectively by the functionγRâ. This function is derived from
the interaction of two spherical charge densities. It interpolates
between the two limiting cases, the 1/R dependence of the
interaction for large interatomic distances and the on-site
electron-electron repulsion, which is (for the neutral atom)
given by the chemical hardness (Hubbard) parameterUR. The
limiting case forR ) 0, γRR ) UR

Hartree, however, is derived
only for the Hartree part of the electron-electron interaction.
Practically,UR contains also the exchange correlation (XC) part,
UR

XC. Therefore, by usingUR ) UR
Hartree+ UR

XC in γRâ for R *
0, we extrapolate the XC contributions into the binding region.

(3) The shape ofγRâ is, to some degree, arbitrary; one could
use the Klopman-Ohno form, as discussed above, or the
Mataga-Nishimoto form

Both forms are used in the common semiempirical methods.
They differ in the intermediate region between 1 and 3 Å, with
DFTB-γ being more repulsive than Klopman-Ohno being more
repulsive than Mataga-Nishimoto. This has influence, for
example, on excited states or on hydrogen-bonding energies.
The Klopman-Ohno scaling in DFTB leads to weaker H-
bonding energies by roughly 1 kcal/mol. However, none of the
functions is a priori the best.

(4) The form ofγRâ has the inverse relationship between UR
and the size of the atomic charge distribution,τR, built in. While,
for R ) 0, γRR is a parameter defining the on-site electron-
electron interaction, for R* 0, it has a very different function
(interpretation); it is the inverse size of the atom. Therefore,
the chemical hardness values are used in DFTB to estimate the
atomic sizes. The coulomb interaction will be smaller for larger
atoms and larger for smaller; this can be seen easily from the
Klopman-Ohno and Mataga-Nishimoto forms. The same holds
for the DFTBγ.

(5) Due to the second-order approximation, the chemical
hardness parameter is a constant for every atom type. In
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particular, it does not change with the charge state of the atom.
The on-site interaction U is the same for the neutral and charged
atom, and the form ofγ is also independent of the charge state.

Comparison to Semiempirical Methods

The DFTB formalism is often compared to other semiem-
pirical methods. These methods are discussed in terms of Fock
matrix elements, which can be compared to the DFTB Hamilton
matrix elements in eq 19.

To make the similarities and differences more obvious, we
derive them in an alternative way using the expansion of the
KS potentials in eqs 9 and 2

Using the density matrixPδσ, we write the density as

Similarily, we can represent the densityF0 using Pδσ
0 , and

defining δPδσ ) Pδσ - Pδσ
0 , we can write

This leads to the SCC-DFTB matrix elements

For NDDO methods, the Fock matrix elements are

with the one-electron integrals

and the two-electron integrals

In the following, a comparison is presented.
First of all, the main difference is that DFTB makes use of

the overlap matrix, while most popular semiempirical methods
are orthogonal methods (except, e.g., the OMx methods
developed by W. Thiel and co-workers; see ref 10).

Despite this, DFTB and NDDO matrix elements look quite
similar; one could identifyhµν

Râ with Hµν
0Râ and the explicit two-

electron integrals in DFTB withgµν. On that basis, DFTB looks
very much like CNDO since both methods apply a monopole
approximation to the two-electron Coulomb interactions
<µν|σδ>, using a functionγRâ to describe the deviation from
the Coulomb law for short distances. Both methods implicitly
include XC effects in that function, DFTB by calculating the
chemical hardness values and CNDO by fitting them to

experimental data. The reduction of the Coulomb interactions
due to the use of theγ function is seen as an effective way to
include dynamical correlation in NDDO methods.12

NDDO methods, however, do not contain correlation effects
explicitly; their functional form is determined by the Hartree-
Fock method, and correlation is covered due to the parametriza-
tion process, while DFTB includes correlation effects explicitly
due to its descent from DFT in the one-electron Hamiltonian
(matrix elementsHµν

0 ) by construction.
However, these similarities are only at the first sight since

hµν andHµν
0 are fundamentally different. While the first one is

a true one-electron term, the DFTB core Hamiltonian contains
the full two-electron part, however, evaluated at the reference
density. For systems without significant charge transfer, the
DFTB description is complete with this term, while the NDDO
methods have to include thegµν terms as well. For systems with
vanishing charge transfer, DFTB is essentially a non-self-
consistent method, while the NDDO methods always evaluate
the electron-electron interaction self-consistently.

Therefore, the starting point to include the two-electron
integrals is fundamentally different; DFTB adds them as a
perturbation to treat the charge density fluctuations, while in
the NDDO methods, these terms cover the complete e-e
interaction. Clearly, MNDO treats these integrals much more
accurately by modeling higher multipole moments of the
interacting charge distributions, while DFTB stops at the
monopole term like CNDO. However, DFTB multiplies the
simplified Coulomb interaction only withδPδσ since the e-e
interaction for the neutral reference system is already covered
in Hµν

0 .
Summarizing, although formally similar, DFTB should not

be compared directly with CNDO- or NDDO-type methods
since the foundations are very different. Similar looking terms
have a completely different meaning and formal origin!

A similar comment applies when comparing DFTB to
(extended) Hu¨ckel Theory (EHT). Both methods look formally
similar at the first sight, but there is, of course, a large difference
in the determination of the matrix elements. EHT (as well as
CNDO) can be derived from DFTB through further simplifica-
tions/approximations. The most striking (formal) similarity of
SCC-DFTB is to the Fenske Hall scheme,11 which has matrix
elements nearly identical to those of DFTB eq 19.

In DFTB, the parametrization effort is clearlyN2 across the
periodic table since parameters for atom pairs have to be
calculated. However, the calculation of the matrix elements is
not very time-consuming. The more involved part is the
determination of the two-body potentials for the repulsive
energy. This approximates the last line in eq 10; neglecting the
XC contributions for a moment, we have

The two contributions cancel each other for long distances.
The first term therefore can be approximated by the function
γRâ, leading to

These terms can, of course, be cast into a form that they contain
only atomic parameters, similar to the situation in the NDDO
methods. However, the good performance of DFTB for geo-
metries and vibrational frequencies is partly due to a very careful
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treatment ofErep. Further, the parametrization effort may only
be reduced at the cost of accuracy. Consider the situation with
four different atom types A, B, C, and D. We determine the
atomic parameters by fitting atoms A and B for molecular
properties and do the same, independently, for C and D. Then,
all atomic parameters would be determined, and systems with
bonds between B and C could be treated. However, it can be
expected that the accuracy for the B-C interactions would be
much better when having those compounds in the fitting set.
At the end, the interaction of all relevant atom pairs has to be
considered in the parametrization process, irrespective of
whether the method contains only atomic parameters or also
parameters for atom pairs, as DFTB does.

Performance of SCC-DFTB for Organic and Biological
Molecules

A summary of the performance of DFTB for organic and
biological molecules can be found in ref 9; therefore, we will
give only a brief update for completeness.

In ref 13, the deviation of DFTB with respect to G2 for 28
reactions of O-, N-, C-, and H-containing molecules was found
to be 4.3 kcal/mol. A more comprehensive study of Jorgensen
and co-workers15 calculated the heats of formation of a large
set of organic molecules. The mean average error of 5.8 kcal/
mol of DFTB is lower than that of AM1 (6.8 kcal/mol) but
higher than that of PM3 (4.4 kcal/mol) and PDDG-PM3 (3.2
kcal/mol).

The current DFTB method shows a slight overbinding, as
pointed out by the work of Thiel and co-workers.10 This leads,
of course, to increasing errors in heats of formation for
increasing molecule sizes.

The strength of DFTB is the good description of molecular
structures.9,13,14,15 Also relative energies, for example, of
polypeptides, are reproduced quite well, on average.17 In this
case, the overbinding is not problematic since similar structures
are compared and only energy differences for different confor-
mations are calculated.

Vibrational frequencies have been significantly improved by
using a special parametrization of the repulsive potential.16 This
work has employed a more sophisticated parametrization scheme
using experimental data rather than DFT calculations on selected
reference molecules. Current work explores different strategies
for a more extensive use of experimental data since the much
simpler former parametrization approaches did not fully exploit
the methodological flexibility and capability of DFTB. In this
way, an improvement in energies and frequencies seems to be
possible.

Since DFTB is an approximation to DFT, it inherits also the
well-known shortcomings of current DFT-GGA functionals.9

This concerns the DFT-GGA problem of over-polarizability in
extended conjugated systems,18 the problem of excited charge-
transfer states, and the problem of van der Waals interactions.
The latter problem is tackled in DFTB in an ad hoc way by
adding empirical dispersion correction to the total energy.19

The Role of the Gamma Function

Any semiempirical method using a Coulomb scaling function
like the Klopman-Ohno (KO) (eq 13) or Matagan-Nishimoto
(MN) (eq 20) forms or the DFTB form as proposed in ref 8
assumes the inverse relationship of atomic size and chemical
hardness. In the MN and KO forms, the chemical hardness
determines the limiting value for small interatomic distances,
that is, introducing the damping of the Coulomb law due to
overlap. In the DFTB formulation, we get a quantitative estimate

from eq 15. Therefore, the chemical hardness parameter has
two functions in a semiempirical theory; the diagonal termsγRR
describe the electron-electron interaction of the atom, given
by UR, and for the two-center termsγRâ, the chemical hardness
parameter is an estimate of the atomic size.

Pearson20 suggested estimating the atomic chemical hardness
value from a simple model, treating atoms as conducting spheres
with radiusR, yielding

Comparison with the MN and KO formulas suggests that these
formulas use this relationship implicitly. Hati and Datta21 used
this relation to calculate chemical hardness values from experi-
mental atomic polarizabilities, showing quite surprising cor-
relation with experimental results.

Gosh and Biswas22 calculated atomic radii corresponding to
the principal maximum in the radial distribution function for
103 elements of the periodic table. Using eq 30, the computed
chemical hardness values show, qualitatively, very nicely trends
throughout the periodic table. Focusing on the first three rows,
however, it turns out that the chemical hardness is overestimated
by roughly a factor of 2 for most of the main group elements,
while agreeing nicely for the metals.

In a recent work of Politzer and co-workers,23 various sets
of covalent radii have been examined, and an overall reasonable
agreement between the different concepts has been found. Table
1 shows the covalent radii calculated by Politzer et al. in
comparison with the atomic radii of Gosh as Biswas. Interesting
is the finding that atomic radii predict the hydrogen atom to be
larger than covalent radii, a finding discussed already by Politzer
and coworkers.23 Clearly, the atomic radii of hydrogen and, for
example, nitrogen (Gosh and Biswas) are quite similar, which
is also reflected in the similar chemical hardness values. The
covalent radii, reflecting the size of hydrogen in chemical
environments, is much smaller. Using the chemical hardness
to estimate the size of hydrogen in molecules largely over-
estimates it.

Therefore, the determination of the size of an atom based on
chemical hardness values will give at least reasonable ratios
for main group elements but will overestimate the size (covalent
radius) of hydrogen when compared to the other elements.

SinceγRâ approaches the valueγRR ) UR at short distances,
the poor relation between its size and the chemical hardness
for H means that modifications have to be made forγRâ for all
X-H (X being heavy atoms) pairs. In principle, this could be
done by modifying the value ofUH for hydrogen according to
its atomic size, which would, however, make the on-site
interaction on H,γH-H, inconsistent with its chemical hardness.

We propose to modifyγRâ in the intermediate region only,
leaving the limiting cases at short and long interatomic distances

TABLE 1: The Covalent Radii rcov (Å) Estimated by
Politzer et al.23 (First Three Lines), Calculated Atomic Radii
from Gosh and Biswas,22 Calculated Hubbard Parameters
Used in DFTB (UH), and Experimental (UH

exp) Hubbard
Parameters (in H)

H C N O F Si P S Cl

rcov

with H 0.70 0.65 0.62 0.59 1.00 0.96 0.91 0.59
with first row 0.37 0.74 0.72 0.70 0.69 0.96 0.97 0.98 0.97
with second row 0.46 0.82 0.77 0.74 0.69 1.09 1.08 1.03 1.00
Gosh/Biswas 0.53 0.65 0.54 0.46 0.41 1.15 0.99 0.87 0.78
UH 0.42 0.36 0.43 0.50 0.59 0.25 0.29 0.33 0.37
UH

exp 0.47 0.37 0.53 0.45 0.52 0.25 0.36 0.30 0.34

2η ) U ) 1
R

(30)
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unchanged. Specifically,γRâ has the following form in the
standard implementation of SCC-DFTB8

with S being a short-range function that leads to the desired
limit for small interatomic distance. Since the hydrogen atom
size according torc ) 5/(16UH) is too large, the density overlap
is overestimated; that is, the electronic interaction starts to
deviate from 1/RRâ too early. To correct for this, an additional
damping term is added for the X-H pairs

This leads to a faster decay ofγRH, thereby taking into account
the smaller size of the H atom according to its smaller covalent
radius. This modification contains a single parameter, the
exponentú, which can be fitted to appropriate reference systems.

The change ofγRH leads to a stronger electrostatic interaction,
that is, the bonds involving hydrogen are more polarized than
those with the originalγ function. In particular, it leads to
consistently improved hydrogen binding interactions. With the
original γ function, the binding energy of weakly hydrogen-
bonded complexes is underestimated by about 1-2 kcal/mol
per bond. The modifiedγRH increases the hydrogen-bonding
strengths on average, leading to a rms error of less than 1 kcal/
mol when compared to high-level ab initio calculations.24 For
example, standard SCC-DFTB yields a binding energy of 3.3
kcal/mol for the water dimer. Choosingú ) 3.6 in eq 32
increases this binding energy to 4.6 kcal/mol, which is close to
the expected value of 5.0 kcal/mol.25

Higher-Order Terms in DFTB

The Hubbard parameters are assumed to be constant; in
particular, they are independent of the atomic charge state.
However, for positively charged atoms,U should become larger
than in the neutral atom; largerU implies a smaller atomic size,
relevant for the two-center part ofγ and a stronger on-site
interaction. For negatively charged atoms, a smallerU will lead
to a larger atomic size and a reduced on-site interaction. Since
U is the second derivative of the total energy, the change ofU
with charge on an atom is given by the third and higher-energy
derivatives with respect to the charge (density).

The change of the (neutral atomic) chemical hardness
parameters due to environmental factors can be estimated by
their derivatives with respect to the atomic charge. These
chemical hardness derivatives were determined by Fuentealba
and Parr26 from fitting to experimental data. Later on, Liu and
Parr27 proposed a formula for the orbital electronegativity and
hardness values, which depend on orbital occupation numbers
and the atomic numberZ. These formulas result from orbital
electronegativity and hardness data for various charge states of
the atoms. For example, the 2p orbital hardness of the atoms
O, N, and F depends on the orbital occupation numbern2s, n2p,
n3s, andZ as follows (in eV)27

In DFTB, no 3s orbitals are present, and if we assume a constant
occupation of the 2s orbital withn2s ) 2, we find, with the
atomic net chargeq

These formulas lead to chemical hardness values close to the
experimental ones. They assume a linear dependence of the
chemical hardness on the atomic number and on the orbital
occupation. The hardness derivative for these three first-row
elements is∂η/∂q ) 2.027 eV.

For DFTB, we can evaluate these values by taking the
numerical derivative of the Hubbard parameters, that is, by
taking the third derivatives of the energy of an atom with respect
to the occupation number of the highest occupied molecular
orbital (HOMO) using the numerical derivatives as suggested
by Mineva.28 The results are shown in Table 2. These values
show consistent trends, and it is encouraging that the Hubbard
derivatives are consistent with the findings of Liu and Parr.
Further, all elements evaluated so far have negative chemical
hardness derivatives, opposite to the finding of Fuentealba and
Parr.26 Maybe the convergence problems of the Taylor series
expansion of the DFT total energy with respect to the number
of electrons is a problem of the higher ionization potentials
used26,29 and less problematic for higher-energy derivatives
calculated for neutral atoms as a reference point. However, it
indicates that the use of higher derivatives may be problematic
when treating highly charged systems.

Now, these charge-dependent chemical hardness parameters
could be directly substituted into the second-order SCC term,
making theγ function charge-dependent. However, it would
be more consistent with the perturbational character of SCC-
DFTB to derive these corrections in a higher-order expansion;
the charge dependence of the Hubbard parameter can be
accounted for in a third-order expansion,30,31that is, expanding
the total DFT energy up to third order in the density fluctuations
(∫dr′ ) ∫′)

The functional derivative with respect toF′′ is approximated
by a derivative with respect to charge (neglecting also three-
center contributions)

γRâ ) 1
RRâ

- S (31)

γRH ) 1
RRH

- S× exp[-(UR + UH

2 )ú

RRH
2 ] (32)

η2p,2p) -4.609- 2.002n2s - 2.027n2p - 1.030n3s +
2.889Z (33)

η2p,2p) -0.505+ 0.862Z + 2.027q (34)

E[F] ) E[F0] + ∫ [δE[F]
δF ]F0
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1
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+ 1
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∆F∆F′∆F′′ (35)
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1
6∫∫′ ∫′′

∆F∆F′∆F′′ δ
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dqγ
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1
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γRâ is dependent on the atomic charges only via the Hubbard
parametersUR, that is

which leads to

The diagonal terms are

and if we define

we can finally write

and

Since we calculate the Hubbard parameter derivatives from DFT
as the third derivative of the total energy, we implicitly include
the spacial variation of the atomic size with total charge,
however, again only in the monopole approximation.

We have implemented the diagonal contribution of the third-
order term recently.32 The diagonal terms change the electron-
electron interaction on the atom with charge state. This is, for
example, important for the total energies of ions. In biological
systems, (de-)protonation energies are important quantities,
which have to be described quite accurately for proton transfer
to be processed. The third-order contribution improves the
predicted proton affinity substantially. For example, with the
estimatedUR

d, based on atomic calculations mentioned above,
the error in the calculated proton affinity of water is reduced
from 26.5 to-5.4 kcal/mol.

Deprotonation energies of acids (R-COOH) at the second-
order DFTB are still about 10 kcal/mol in error, reducing to a
few kcal/mol at the third order.

The diagonal third-order terms, however, do not include the
effects of chemical hardness changes in the two-center contribu-
tions. As discussed above, the larger spacial extension of the
electronic densities of anions should lead to a reduced Coulomb
interaction via the reduced Hubbard parameter in theγ function.
For example, in the second-order and third-order diagonal
formalisms, the interaction of anions with water is overestimated
by several kilocalories per mole (e.g., hydroxide-water).32 This
may be corrected consistently by including the third-order
nondiagonal terms, as preliminary calculations indicate.

Conclusion

We have reviewed the assumptions and approximations
constituting the SCC formalism, as implemented in SCC-DFTB.
SCC-DFTB treats charge density fluctuations with respect to
the input density perturbatively. As we have shown, this
approximation becomes critical when atoms carry significant
partial charges. This can be corrected by including higher-order
terms in the functional expansion. A second critical approxima-
tion concerns the effective electron-electron interaction at the
second order. It uses a simple law throughout the periodic table,
which is quite reasonable for many atom types but may not be
appropriate in every case, as shown, for example, for hydrogen.
Therefore, the interaction may have to be changed in some cases.
The modifications of theγRâ and the third-order corrections
come without additional cost. However, they are not required
in many cases. The second-order method is sufficient for many
application in biology and organic chemistry. It is slower by a
factor of 3-5 on average than the non-SCC method due to the
self-consistent solution of the eigenvalue problem (3-5 diago-
nalization iterations). Therefore, for many applications, the non-
SCC method will be favorable. Small differences in electrone-
gativities of the atoms present in the system are an indicator
for the applicability of non-SCC. However, large differences
are not always an indicator for its failure.

Concerning reaction energies and heats of formation, a more
efficient parametrization scheme may lead to improved results
(especially by removing the overbinding), that is, the flexibility
of DFTB to treat different chemical environments may not be
exploited completely with the current parametrization approach.
Current efforts for a DFTB reparametrization are along these
lines.
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