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The approximate SCC-DFTB method (Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.;
Frauenheim, Th.; Suhai, S.; Seifert, Bhys. Re. B 1998 58, 7260) is derived from DFT by a second-order
expansion of the total energy expression. In this article, basic approximations and assumptions underlying
the DFTB method are discussed in detail, and further extensions to include third-order terms are proposed.
Further, the SCC-DFTB and semiempirical NDDO formalisms are compared to elucidate similarities and
differences.

Introduction which is calculated from the atomic orbitals. Nonorthogonal

The non-self-consistent DFTB method, as introduced in refs
1 and 2, is an approximation to density functional theory (DFT)
in a LCAO formulation.

G. Seifer? (this volume) reviews the underlying assumptions
and approximations of the DFTB method in great detail;
therefore, the following is only a brief introduction, necessary

methods (i.e., those including the overlap matrix) are thought
to be more robust and transferable compared to orthogonal
methods, where the atomic orbitals are assumed to be orthogo-
nal.

The DFTB Hamilton matrix elements calculated for the
minimal LCAO basis sef;,

to understand the concepts behind the self-consistent charge HO — < Iy -
(SCC) extension. L = < 1, Hlpl 17,
Consider a case where the ground-state depsity known

already to sufficient accuracy. In this cdsee self-consistent
solution of the Koha-Sham (KS) equations can be omitted.

are subject to several approximations, in particular a two-
center approximation is applied, as discussed in the article of

reference densityo) andS,, are calculated once using an atomic
1, DFT program and are tabulated. Therefore, that main compu-
’_EV + Ueﬁ[po]]¢i = € @) tational cost of DFTB is the solution of the generalized
eigenvalue problem, that is, the diagonalization of the Hamilton

with the effective KS potential matrix.
The sum of the KohtSham eigenvalues
Za Po(r)
Verlpol = Z - + [ ——drtude @ E,= Z ei ©6)
Introduction of a LCAO basis set is only one part of the DFTB total energy; the second part

and the Hamiltonian

leads to the generalized eigenvalue problem

_ represents the DFT double-counting contributions and-ecore
b = Z C,Iﬁu (3) core repulsion terms. These contributions are approximated as
n : repulsive and pairwise potentials (between atemandf3)

1
R R Erep = 5 g U(Raﬂ) (7)
H(oo) =T + verlpol (4) *
The total energy therefore reads

occ

> o <mfledin> =6y ¢ <mm>  6)  Epp=Y &+ ; UR,,) =
u u T

occ
which is usually solved using matrix diagonalization methods. zz d CiVHOV _|_} U(Ry) (8)
Note that the DFTB method makes use of the overlap matrix X"
So = <n,n,> This scheme is computationally very efficient, about 3 orders

of magnitude faster than DFT calculations with medium-sized

 Part of the “DFTB Special Section”. basis sets. Its accuracy is satisfactory for many applications;
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especially molecular geometries are comparable to those of DFT, occ

but vibrational properties being slightly worse. Of course, the E = zmbi|H°|¢>i|]+

accuracy depends critically on the quality of the Hamilton matrix [

elements. Here, we focus on a different point, the limitations 1 , 1 .
due to the non-self-consistent treatment of the KS equations. - f f _ e —
This approximation is expected to work satisfactorily when the 2 T —=T'1 0pop’
ground-state density is close to the reference depsits point 1 . P

discussed in detail by_l_:oulkes and H_aydédlp_ DFTB, we ——f f ———+EJpd — foc[Po]Wo+ E. (10)
choosep as a superposition of the atomic densities of the neutral 2 T =

atoms in the system. Combination of atoms into a molecule After introducing the LCAO basi¥; = C;i//.u’ the first term
leads primarily to a charge equilibration, that is, a charge flow pecomes

between the atoms due to the different atomic electronegativities. R o

This charge flow will stop when the electronegativities are IIﬁiIHolci)iD: z C/'4 c, HEV

equilibrated* A second effect is that the atomic-like densities v

will c_hange their shape_. This is_taken i_nto account by the 4hd can be evaluated as discussed above. The last four terms
solut!on of the _KS equations, that is, the dl_agqnallzatlon of the depend only on the reference densityand represent (together
Hamilton matrix leads to a charge density in the non-self- \ i the core-core repulsion) the repulsive energy contribution
consistent formalism, which represents the molecular charge Erep as discussed in the contribution of G. Seifert.

density and is no more a superposition of spherical atomic 1.4 second-order term in the charge density fluctuatinns

charge densities. (the second term in e [ i it
g 10) is approximated by writiigas a
Therefore, we expect the method to work when the system superposition of atomic contributions

contains atoms with comparable electronegativities; typical
examples are hydrocarbohdMany other homo- and hetero- Ap = z Ap,
nuclear molecular systems have been approached successfully o

with DFTB, containing, for example, silicon, nitrogen, and other
elements. Dramatic failures have been found when oxygen is
present However, there is no clear limit for the use of the non-
self-consistent method. Large electronegativity differences

between the atoms of the system are an indicator, but the methoq:g0 denotes the normalized radial dependence of the density
does not necessarily fail here. lonic systems like NaCl with large fluctuation on atorm, which is constrained (approximated) to
charge transfer between the atoms have been treated successfullye sphericalYyo), that is, the angular deformation of the charge
with non-self-consistent methods (e.g., ref 7). Systems with density change in second order is neglected. Therefore, we only
intermediate charge transfer, where the electronegativity dif- treat the charge-transfer effects but neglect the change in the
ference favors a significant charge transfer but the equilibration shape of the charge density (with respect to the reference
of electronegativities leads to a partial back-transfer, seem to gensity) in the second-order expression. Note that this is partly
be most problematic. This is often the case for biological and taken care of in the first-order terms (see Introduction). The
organic systems containing oxygen; therefore, a self-consistentgiagonalization of the Hamilton matrix describes this density
scheme is usually required. shape change of the neutral atomic input densities, however,

The effective Kohn-Sham potentials in the non-self- only in a non-self-consistent way. The second-order part
consistent case contain only the neutral reference depgity pecomes

which does not account for charge transfer between atoms. To
account for that, a simple (functional) expansion of the potential SRS

2

ApAp'

Mo

To further simplify E2", we apply a monopole approximation

Apg ~ Ad,FooYoo (11)

2

with the ground-state densigyaround the reference denspy 1 ’ 1 O%E,.
leads to _ AQ,Aq T F |:/3 Y2 (12)
2; o ﬁff T -7 0pdp ny,|] T0o oo Too
Overlel s v his formula look licated but h ite simpl
Vel 0] = verlogl + f 5 OpdT 9) This formula loo s comp icate ut%as a quite simple curve
p shape. For large distancd®,s = [I — T'| — o, the XC terms

vanish (in DFT-GGA), and the integral describes the coulomb
interaction of two spherical normalized charge densities, which
ereduces basically to R, that is, we get

Rus

For a vanishing interatomic distand&,; = [f —T'| — 0, the
integral describes the—e interaction on atonu. We can

The advantage of this perturbative approach is that it corrects
the zero-order Hamilton matrix elemes, [ o], which depend
on the reference density as above, by terms depending on th
charge density fluctuation with respect to the reference density. 1
Therefore, a self-consistent procedure based on such an expan- B~ = Z
sion can use the formalism of the non-self-consistent method 26
and has to take corrections into account only for the case of
nonnegligible charge flow between the atoms.

Self-Consistent Charge (SCC) Extension of DFTB approximate the integral as
Instead of expanding the potentials in the KS equations, it is ond . 1 82EOL , 1 )
more convenient to start from the DFT total energy by a second- S 2 82q Ag, = 2 U Adg
(08

order expansidghwith respect to the charge density fluctuations

op around a given reference densiy U is known as the Hubbard parameter or the chemical hardness.
, o . It describes, how much the energy of a system changes upon
(0o = po(T"), J* = JdT") the addition or removal of electrons. For SCC-DFTB, it is
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calculated using Janak’s theorem by taking the first derivative matrix elements depend on thigdue to the Mulliken charges
of the energy of the highest occupied molecular orbital with (uea., vepS)
respect to occupation number. A .

The intermediate region of chemical bonding—@ A),
however, is not covered in these limits. It is therefore crucial HEY = Hi’ + Esﬂlf Z AQs(Yas t Vo) (19)
to find a good way to interpolate between the limits since an ¢
explicit calculation of the integrals would be too costly. A very
similar situation appears in semiempirical quantum chemical
methods like MNDO, AM1, or PM3, where the interpolating
function y.g has a simple form, as given, for example, by the
Klopman—Ohno approximation

The two-body contribution®J[R,s] are determined by com-
parison of the energy according to eq 18 with that from full
DFT calculations with respect to the interatomic distaRgg
of the atomsx and 5 (see refs 3 and 9). The resulting energy
curve U[R,g] is then analytically represented by splines. The
1 determination of repulsive potentials for organic molecules has
Vop = (13) been reviewed briefly recentfy.
\/Riﬁ +0.25(10, + 1/[_1/})2 Let’s recall the basic assumptions in the SCC approximations.
(1) The starting (input) density is generated from a superposition
In a first version, this form was implemented into DFTB; Of spherical atomic densities (neutral atoms). The density change
however, the Ewald sum using this form exhibited convergence from this reference density is described by the first-order terms,
problems. Therefore, an analytic expression has been deriveddy diagonalization ot” in a non-self-consistent way. At the
by approximating the charge density fluctuations with spherical second order, due to the monopole approximation, only the net
charge densities Slater-like distributions charge flow between the atoms is treated self-consistently.
Higher multipole terms in the interaction of the difference
T, densityAp are neglected at second order but included in first
Foo= G, EXPETIr — Ry) (14) order partially by . ¢,c,Hy,.
(2) The monopole interaction in second order is approximated
by the interaction of point charges, where the effects of charge
overlap, exchange, and correlation are taken into account

located atR, allow for an analytical evaluation of the Hartree
contribution of two spherical charge distributions. This leads ! . ) Al .
effectively by the functiorny.s. This function is derived from

to a function ofy.g, which depends on the parametegsand ) ; : o :
74, determining the extension of the charge densities of the atomsthe interaction of two _s_phencal charge densities. It interpolates
between the two limiting cases, theRllependence of the

o andB. This function has a R,z dependence for largB,s . . . > .
and approaches a finite value fB; — 0. Foro. = f3, one interaction for large interatomic distances and the on-site

finds that electron-electron repulsion, which is (for the neutral atom)
given by the chemical hardness (Hubbard) paramdterThe
16 limiting case forR = 0, yea = U2 however, is derived
Ta = 5§ Vo (15) only for the Hartree part of the electrerelectron interaction.

Practically,U, contains also the exchange correlation (XC) part,

Equation 15 implies that the extension of the charge distribution Us - Therefore, by usingJy = Ug™**+ U in yp for R=

is inversely proportional to the chemical hardness of the O, We extrapolate the XC contributions into the binding region.
respective atom, that is, the size of an atom is inversely related ~ (3) The shape of; is, to some degree, arbitrary; one could
to its chemical hardness. By neglecting the effect of the chemical Use the KlopmarOhno form, as discussed above, or the
environment on atoma, the diagonal part ofy can be Mataga-Nishimoto form
approximated by the chemical hardnessef the atom

1
Vop = (20)
PE, ¥ Ry + 0510, + 1/Uy)
Yaa = 277(1 = UOL = 2 (16) . . ..
0, Both forms are used in the common semiempirical methods.

They differ in the intermediate region between 1 and 3 A, with
Using the interpolation formulg,s, E>"becomes a simple two- ~ DFTB-y being more repulsive than Klopma®hno being more
body expression, depending on atomic-like charges (from arepulsive than MatagaNishimoto. This has influence, for
Mulliken population analysis) example, on excited states or on hydrogen-bonding energies.
The Klopman-Ohno scaling in DFTB leads to weaker H-
ond . L bonding energies by roughly 1 kcal/mol. However, none of the
ET~— ; AQ,AGRY o5 (17) functions is a priori the best.
2 (4) The form ofy.s has the inverse relationship betweeg U

i L ) . and the size of the atomic charge distributiap,built in. While,
With these definitions and approximations, the SCC-DFTB 5, R = o Yea iS @ parameter defining the on-site electron

energy finally reads electron interaction, for B 0, it has a very different function
1 1 (interpretation); it is the inverse size of the atom. Therefore,
scc i 40 o p the chemical hardness values are used in DFTB to estimate the
E WZ G € Huv 2 ; VoG 2 ; Uleo: ol atomic sizes. The coulomb interaction will be smaller for larger
(18) atoms and larger for smaller; this can be seen easily from the

Klopman—Ohno and MatagaNishimoto forms. The same holds
The variational principle leads to a generalized eigenvalue for the DFTBy.

problem like that in eq 5, which has to be solved iteratively for ~ (5) Due to the second-order approximation, the chemical
the wave function expansion coefficierm;ﬁsince the Hamilton hardness parameter is a constant for every atom type. In
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particular, it does not change with the charge state of the atom.experimental data. The reduction of the Coulomb interactions
The on-site interaction U is the same for the neutral and chargeddue to the use of the function is seen as an effective way to

atom, and the form of is also independent of the charge state.

Comparison to Semiempirical Methods

The DFTB formalism is often compared to other semiem-

pirical methods. These methods are discussed in terms of Foc
matrix elements, which can be compared to the DFTB Hamilton

matrix elements in eq 19.

To make the similarities and differences more obvious, we

include dynamical correlation in NDDO methots.

NDDO methods, however, do not contain correlation effects
explicitly; their functional form is determined by the Hartree
Fock method, and correlation is covered due to the parametriza-

Wion process, while DFTB includes correlation effects explicitly

due to its descent from DFT in the one-electron Hamiltonian
(matrix eIementsHm,) by construction.
However, these similarities are only at the first sight since

derive them in an alternative way using the expansion of the . andH}, are fundamentally different. While the first one is

KS potentials in eqs 9 and 2
HE = <ulT + veel ol [v>

eff[p]

= <uIT+ verlpollv> + <ul [—5 = opdr|v>

r
~HL = <ul f# drjv> + <uldv,[pllv> (21)

Using the density matri®s,, we write the density as

p= Z Péon(;no (22)
o

Similarily, we can represent the densipg using Pga, and

defining 5P, = Py, — P}, we can write
op= Z OPsolsll, (23)
0o
This leads to the SCC-DFTB matrix elements
Ho = H + Z OP,, <uv|0o> + <u|dv[p]|v>
' (24)
For NDDO methods, the Fock matrix elements are
N7} of
- hm/ + guv (25)
with the one-electron integrals
Z,
het = <ulTlv> — <ul Z > (26)
iy
and the two-electron integrals
of 1
go = Z Ps| <uv|od> - <uol|vd> (27)

In the following, a comparison is presented.

First of all, the main difference is that DFTB makes use of
the overlap matrix, while most popular semiempirical methods
are orthogonal methods (except, e.g.,
developed by W. Thiel and co-workers; see ref 10).

Despite this, DFTB and NDDO matrix elements look quite
similar; one could identiffn® with H* and the explicit two-
electron integrals in DFTB witly,,. On that basis, DFTB looks
very much like CNDO since both methods apply a monopole
approximation to the two-electron Coulomb interactions
<uv|od>, using a functiory.s to describe the deviation from
the Coulomb law for short distances. Both methods implicitly
include XC effects in that function, DFTB by calculating the
chemical hardness values and CNDO by fitting them to

the OMx methods

a true one-electron term, the DFTB core Hamiltonian contains
the full two-electron part, however, evaluated at the reference
density. For systems without significant charge transfer, the
DFTB description is complete with this term, while the NDDO
methods have to include tlyg, terms as well. For systems with
vanishing charge transfer, DFTB is essentially a non-self-
consistent method, while the NDDO methods always evaluate
the electror-electron interaction self-consistently.

Therefore, the starting point to include the two-electron
integrals is fundamentally different; DFTB adds them as a
perturbation to treat the charge density fluctuations, while in
the NDDO methods, these terms cover the complete e
interaction. Clearly, MNDO treats these integrals much more
accurately by modeling higher multipole moments of the
interacting charge distributions, while DFTB stops at the
monopole term like CNDO. However, DFTB multiplies the
simplified Coulomb interaction only witldPs, since the e-e
interaction for the neutral reference system is already covered
in HY,.

Summarizing, although formally similar, DFTB should not
be compared directly with CNDO- or NDDO-type methods
since the foundations are very different. Similar looking terms
have a completely different meaning and formal origin!

A similar comment applies when comparing DFTB to
(extended) Hakel Theory (EHT). Both methods look formally
similar at the first sight, but there is, of course, a large difference
in the determination of the matrix elements. EHT (as well as
CNDO) can be derived from DFTB through further simplifica-
tions/approximations. The most striking (formal) similarity of
SCC-DFTB is to the Fenske Hall schedtayhich has matrix
elements nearly identical to those of DFTB eq 19.

In DFTB, the parametrization effort is cleaN? across the
periodic table since parameters for atom pairs have to be
calculated. However, the calculation of the matrix elements is
not very time-consuming. The more involved part is the
determination of the two-body potentials for the repulsive
energy. This approximates the last line in eq 10; neglecting the
XC contributions for a moment, we have

f f |rPoP0

The two contributions cancel each other for long distances.
The first term therefore can be approximated by the function
Yo, leading to

(28)

1 1
—5 g ZZ57up +5 ; Z,Zy/Rys (29)

These terms can, of course, be cast into a form that they contain
only atomic parameters, similar to the situation in the NDDO
methods. However, the good performance of DFTB for geo-
metries and vibrational frequencies is partly due to a very careful
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treatment ofE.ep Further, the parametrization effort may only TABLE 1: The Covalent Radii rco, (A) Estimated by

be reduced at the cost of accuracy. Consider the situation with Politzer et al.2 (First Three Lines), Calculated Atomic Radii
four different atom types A, B, C, and D. We determine the oM Gosh and Biswas;® Calculated Hubbard Parameters
atomic parameters by fitting atoms A and B for molecular g;fgnigtgr';—r(ﬁ] (LH";') and Experimental (Uy®) Hubbard
properties and do the same, independently, for C and D. Then,

all atomic parameters would be determined, and systems with H ¢C N O F s P s d
bonds between B and C could be treated. However, it can berco,
expected that the accuracy for the-8 interactions would be ~ with H 0.70 0.65 0.62 0.59 1.00 0.96 0.91 0.59

; i it with first row 0.37 0.74 0.72 0.70 0.69 0.96 0.97 0.98 0.97
much better when having those compounds in the fitting set. with second row 0.46 0.62 0.77 0.74 069 109 108 103 100

At the end, the interaction of all relevant atom pairs has to be ./ /piswas 053 0.65 054 046 0.41 1.15 099 087 0.78
considered in the parametrization process, irrespective of y, 0.42 0.36 0.43 0.50 0.59 0.25 0.29 0.33 0.37
whether the method contains only atomic parameters or alsoyg® 0.47 0.37 0.53 0.45 0.52 0.25 0.36 0.30 0.34
parameters for atom pairs, as DFTB does.

from eq 15. Therefore, the chemical hardness parameter has
Performance of SCC-DFTB for Organic and Biological two functions in a semiempirical theory; the diagonal teyms
Molecules describe the electrorelectron interaction of the atom, given

A summary of the performance of DFTB for organic and by U, and for the two-center terms,s, the chemical hardness

biological molecules can be found in ref 9; therefore, we will parameter Is an estlmate_of tl_1e atomic size. .
give only a brief update for completeness Pearsof suggested estimating the atomic chemical hardness

In ref 13, the deviation of DFTB with respect to G2 for 28 value from a simple model, treating atoms as conducting spheres

reactions of O-, N-, C-, and H-containing molecules was found with radiusR, yielding

to be 4.3 kcal/mol. A more comprehensive study of Jorgensen 1

and co-worker® calculated the heats of formation of a large 2n=U= R (30)
set of organic molecules. The mean average error of 5.8 kcal/

mol of DFTB is lower than that of AM1 (6.8 kcal/mol) but
higher than that of PM3 (4.4 kcal/mol) and PDDG-PMS3 (3.2
kcal/mol).

The current DFTB method shows a slight overbinding, as
pointed out by the work of Thiel and co-workéfsThis leads,
of course, to increasing errors in heats of formation for
increasing molecule sizes.

The strength of DFTB is the good description of molecular
structure$:1314.15 Also relative energies, for example, of
polypeptides, are reproduced quite well, on avefdda.this
case, the overbinding is not problematic since similar structures
are compared and only energy differences for different confor-
mations are calculated.

Vibrational frequencies have been significantly improved by
using a special parametrization of the repulsive potefiahis
work has employed a more sophisticated parametrization schem
using experimental data rather than DFT calculations on selecte
reference molecules. Current work explores different strategies
for a more extensive use of experimental data since the much

simpler former parametrization approaches did not fully exploit larger than covalent radii, a finding discussed already by Politzer
the methodological flexibility and capability of DFTB. In this ang coworker&3 Clearly, ,the aton?ic radii of hydroge)rll a¥1d, for

way, an improvement in energies and frequencies seems to beexample, nitrogen (Gosh and Biswas) are quite similar, which

po;_smle.DFTB_ imation to DET. it inherits also th is also reflected in the similar chemical hardness values. The
ince IS an approximation (o , [LINNErs also e ¢y a1ent radii, reflecting the size of hydrogen in chemical

_lvyﬁ.ll-known Sh?k:tc%r2$§§60;\ cur[ﬁnt DiT'GGA ;‘ur.lctlg.?.;ﬁls.. environments, is much smaller. Using the chemical hardness
IS concerns the ) probiém Of Over-polarnzability N 1, astimate the size of hydrogen in molecules largely over-

extended conjugated systefishe problem of excited charge- estimates it

tTrﬁnslfer statest,)land_the plr(?b(lje_m gF\fl_"J‘Q _der Wagli mteractlgns. Therefore, the determination of the size of an atom based on
e latter problem Is tackled in In an ad hoc way by - chemical hardness values will give at least reasonable ratios

adding empirical dispersion correction to the total enéfgy. for main group elements but will overestimate the size (covalent
radius) of hydrogen when compared to the other elements.
Sinceyqs approaches the valye,, = U, at short distances,
Any semiempirical method using a Coulomb scaling function the poor relation between its size and the chemical hardness
like the Klopman-Ohno (KO) (eq 13) or MatagarNishimoto for H means that modifications have to be madeyfgy for all
(MN) (eq 20) forms or the DFTB form as proposed in ref 8 X—H (X being heavy atoms) pairs. In principle, this could be
assumes the inverse relationship of atomic size and chemicaldone by modifying the value dfy for hydrogen according to
hardness. In the MN and KO forms, the chemical hardnessits atomic size, which would, however, make the on-site
determines the limiting value for small interatomic distances, interaction on Hyy_y, inconsistent with its chemical hardness.
that is, introducing the damping of the Coulomb law due to = We propose to modifyqs in the intermediate region only,
overlap. In the DFTB formulation, we get a quantitative estimate leaving the limiting cases at short and long interatomic distances

Comparison with the MN and KO formulas suggests that these
formulas use this relationship implicitly. Hati and D&ttased

this relation to calculate chemical hardness values from experi-
mental atomic polarizabilities, showing quite surprising cor-
relation with experimental results.

Gosh and Bisw&3 calculated atomic radii corresponding to
the principal maximum in the radial distribution function for
103 elements of the periodic table. Using eq 30, the computed
chemical hardness values show, qualitatively, very nicely trends
throughout the periodic table. Focusing on the first three rows,
however, it turns out that the chemical hardness is overestimated
by roughly a factor of 2 for most of the main group elements,
while agreeing nicely for the metals.

In a recent work of Politzer and co-workefsyarious sets
of covalent radii have been examined, and an overall reasonable

greement between the different concepts has been found. Table
1 shows the covalent radii calculated by Politzer et al. in
comparison with the atomic radii of Gosh as Biswas. Interesting
is the finding that atomic radii predict the hydrogen atom to be

The Role of the Gamma Function
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unchanged. Specificallyy,s has the following form in the These formulas lead to chemical hardness values close to the

standard implementation of SCC-DF3B experimental ones. They assume a linear dependence of the
chemical hardness on the atomic number and on the orbital
Vop = 1 S (31) occupation. The hardness derivative for these three first-row
Rys elements isiy/oq = 2.027 eV.

with S being a short-range function that leads to the desired For DFTB, we can evaluate these values by taking the
limit for small interatomic distance. Since the hydrogen atom numerical derivative of the Hubbard parameters, that is, by
size according to. = 5/(16Uy) is too large, the density overlap  taking the third derivatives of the energy of an atom with respect
is overestimated; that is, the electronic interaction starts to to the occupation number of the highest occupied molecular
deviate from 1R,z too early. To correct for this, an additional  orbital (HOMO) using the numerical derivatives as suggested
damping term is added for the->H pairs by Mineva?® The results are shown in Table 2. These values
show consistent trends, and it is encouraging that the Hubbard
F{ (U + U, ) RiH] (32) derivatives are consistent with the findings of Liu and Parr.
Further, all elements evaluated so far have negative chemical
hardness derivatives, opposite to the finding of Fuentealba and
Parr2é Maybe the convergence problems of the Taylor series
expansion of the DFT total energy with respect to the number
of electrons is a problem of the higher ionization potentials
used®?® and less problematic for higher-energy derivatives
calculated for neutral atoms as a reference point. However, it
those with the originaly function. In particular, it leads to indicates that the use of higher derivatives may be problematic

consistently improved hydrogen binding interactions. With the When treating highly charged systems.

original y function, the binding energy of weakly hydrogen- Now, these charge-dependent chemical hardness parameters
bonded complexes is underestimated by abet® kcal/mol could be directly substituted into the second-order SCC term,
per bond. The modified/o increases the hydrogen-bonding making they function charge-dependent. However, it would
strengths on average, leading to a rms error of less than 1 kcalbe more consistent with the perturbational character of SCC-
mol when compared to high-level ab initio calculatihs$:or DFTB to derive these corrections in a higher-order expansion;
example, standard SCC-DFTB yields a binding energy of 3.3 the charge dependence of the Hubbard parameter can be
kcal/mol for the water dimer. Choosing = 3.6 in eq 32 accounted for in a third-order expansi®¥#lthat is, expanding
increases this binding energy to 4.6 kcal/mol, which is close to the total DFT energy up to third order in the density fluctuations
the expected value of 5.0 kcal/n¥l. (far' = /)

Higher-Order Terms in DFTB

The Hubbard parameters are assumed to be constant; "E[p] Elpd] +f’ [P]
particular, they are independent of the atomic charge state.

However, for positively charged atontd,should become larger

than in the neutral atom; largerimplies a smaller atomic size, f f [5 Elp] /
relevant for the two-center part of and a stronger on-site 2 0p0p" |p

1
=—_——Sxex
YaH RaH
This leads to a faster decay pfn, thereby taking into account
the smaller size of the H atom according to its smaller covalent
radius. This modification contains a single parameter, the
exponent, which can be fitted to appropriate reference systems.
The change of .+ leads to a stronger electrostatic interaction,

that is, the bonds involving hydrogen are more polarized than

interaction. For negatively charged atoms, a smallevill lead
to a larger atomic size and a reduced on-site interaction. Since f f f ’ 6°Elp]
U is the second derivative of the total energy, the chandg of 6 0pop'op"
with charge on an atom is given by the third and higher-energy
derivatives with respect to the charge (density). o2 E[p] e

The change of the (neutral atomic) chemical hardness E° ~ 6 f f f 500000 |, ApAp'Ap" =
parameters due to environmental factors can be estimated by
their derivatives with respect to the atomic charge. These 8%E[p]
chemical hardness derivatives were determined by Fuentealba GII f ApAp'Ap "— 15000 1o,
and Parf® from fitting to experimental data. Later on, Liu and pop
Parf’ proposed a formula for the orbital electronegativity and
hardness values, which depend on orbital occupation numbersThe functional derivative with respect 18’ is approximated
and the atomic numbeZ. These formulas result from orbital by @ derivative with respect to charge (neglecting also three-
electronegativity and hardness data for various charge states ofenter contributions)
the atoms. For example, the 2p orbital hardness of the atoms

Ao Ap” (35)

(36)

O, N, and F depends on the orbital occupation nunmbginyp, N 1 " d B
nzs, andZ as follows (in eV§’ E Né Z AQ,AQgAQ, f FooYoo d_Vaﬁ =

opy q,
Nap2p= —4.609— 2.002,, — 2.02'h,, — 1.030y, + 1 d

2.88% (33) ~ ) AQAQAG, — 744 (37)
6 & dqg,

In DFTB, no 3s orbitals are present, and if we assume a constant 1 oy 1 s oy
occupation of the 2s orbital withys = 2, we find, with the _ oo of
atomic net charge 6 z Ag; %0, +- ; AQ,AGs| AQ, —— + Agy— 5

o qoL qﬂ

Tap2p= —0.505+ 0.86Z + 2.027 (34) (38)
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TABLE 2: Derivatives of the Hubbard Parameter U = 2p
(H) with Respect to the Occupation Number of the Highest
Occupied Molecular Orbital

H B C N (0] F
aU/on —0.1857 —0.1008 —0.1492 —0.1535 —0.1575 —0.161

Na Mg Si P S Cl
dU/an —0.0447 —0.0497 —0.0718 —0.0702 —0.0695 —0.0691

Elstner

The diagonal third-order terms, however, do not include the
effects of chemical hardness changes in the two-center contribu-
tions. As discussed above, the larger spacial extension of the
electronic densities of anions should lead to a reduced Coulomb
interaction via the reduced Hubbard parameter inthanction.

For example, in the second-order and third-order diagonal
formalisms, the interaction of anions with water is overestimated
by several kilocalories per mole (e.g., hydroxideater)32 This

may be corrected consistently by including the third-order

vop is dependent on the atomic charges only via the Hubbard nongiagonal terms, as preliminary calculations indicate.

parameterdJ,, that is

39/&5 B ayuﬁauu

= 39
a9, 99U, aq, (39)
U U
M=o V=5 (40)
U, 0q, 0,

which leads to

el A3ayw+1 AQAQIAGT ., + AQ,T, ]
=-% Aq, = A AG[AT s + AGT,
62 - 60; plAGT o + AgsTy
1 oo 1
=~V A —+-Y AG?Aq, 41
62(13% 6ogﬁqqﬁaﬂ (41)

The diagonal terms are

1 Vaao 1
E=-Y A ==Y AU (42)
62 * aU,, 00, 62 o
and if we define
r 1 I ’
I = éua o ru,@ (43)
we can finally write
s_ 1 2 )
E 25 ;AquqﬁFaﬁ (44)

and

2 3 1 2 r
E2+E = E%Aquqﬁ Yas + éAqal“aﬁ (45)

Since we calculate the Hubbard parameter derivatives from DFT

Conclusion

We have reviewed the assumptions and approximations
constituting the SCC formalism, as implemented in SCC-DFTB.
SCC-DFTB treats charge density fluctuations with respect to
the input density perturbatively. As we have shown, this
approximation becomes critical when atoms carry significant
partial charges. This can be corrected by including higher-order
terms in the functional expansion. A second critical approxima-
tion concerns the effective electrorlectron interaction at the
second order. It uses a simple law throughout the periodic table,
which is quite reasonable for many atom types but may not be
appropriate in every case, as shown, for example, for hydrogen.
Therefore, the interaction may have to be changed in some cases.
The modifications of theyys and the third-order corrections
come without additional cost. However, they are not required
in many cases. The second-order method is sufficient for many
application in biology and organic chemistry. It is slower by a
factor of 3-5 on average than the non-SCC method due to the
self-consistent solution of the eigenvalue problem%3liago-
nalization iterations). Therefore, for many applications, the non-
SCC method will be favorable. Small differences in electrone-
gativities of the atoms present in the system are an indicator
for the applicability of non-SCC. However, large differences
are not always an indicator for its failure.

Concerning reaction energies and heats of formation, a more
efficient parametrization scheme may lead to improved results
(especially by removing the overbinding), that is, the flexibility
of DFTB to treat different chemical environments may not be
exploited completely with the current parametrization approach.
Current efforts for a DFTB reparametrization are along these
lines.
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